Lead Free 2015

It is hard to believe that in July we will celebrate the 9th anniversary of the advent of RoHS. So the timing seemed right when I was recently asked to speak at the Boston SMTA Chapter on The Status of Lead-Free 2015: A Perspective.

An overview of the entire 75-minute presentation would be a bit long, so I am going to discuss three of the “questions” that I covered.

  1. Q: We are now almost nine years into RoHS’s ban on lead in solder. How has lead-free assembly worked out?

A: Something over $7 trillion of electronics have been produced since RoHS came into force, with no major reliability problems. One senior person, whose company has sold hundreds of millions of lead-free devices since 2001, reports no change in field reliability. The challenge that implementing lead-free assembly placed on the industry should not be minimized, however. Tens of billions of dollars were spent in the conversion. In addition, failure modes have occurred that were not common in tin-lead assembly, such as the head-in-pillow and graping defects. But assemblers have worked hard with their suppliers to make lead-free assembly close to a non-issue. Some people ask how I can say that lead-free assembly is close to a non-issue. My office is across the hall from some folks that purchase millions of dollars of electronics a year for Dartmouth. Several years ago, I asked them how they feel that electronics perform since the switch to lead-free. They answered by saying “What is lead-free?” If people that buy millions of dollars of electronics have not even heard of lead-free it can’t be a big issue.

  1. Q: In light of sourcing difficulties, is there an industry consensus regarding lead-free conversion for military, medical, aerospace etc. assemblers that will continue to be exempt?

A: The main issue is getting components with tin-lead leads, especially BGA balls. Many assemblers are reballing BGAs, which has become a mature technology, although with an added cost. As years go by and there becomes more confidence in medium to long term lead-free reliability, some exemptees may switch to lead-free. However, I think mission critical applications with 40-year reliability requirements must be extremely cautious to make the switch. There may be subtle reliability issues that may show up in 40 years, that are not found in accelerated testing. One concern is aging. Even at room temperature, solders are at over 50% of their melting temperature on the absolute scale (300K/573K = 0.52). So aging can occur at room temperature. Some research suggests that lead-free alloys may be more affected by aging than tin-lead alloys.

  1. Q: It has been said that you claim that lead-free assembly has some advantages. Can this be true?

A: Guilty as charged. Lead-free solder does not flow and spread as well as tin-lead solder. This property can result in poor hole fill in wave soldering and some other assembly challenges. However, this poor wetting and spreading means that pads can be spaced closer on a PWB without the concern of shorting as seen in the image below. Your mobile phone would likely be bigger if assembled with tin-lead solder.

image001

Lead-free solder does not flow as well as tin-lead solder. Hence, closer pad spacings are possible.

 

Cheers,

Dr. Ron

Photo courtesy of Vahid Goudarzi.

 

RoHS, Six Years After

Folks,

I was at IPC Apex Expo the other week.  San Diego is a great venue for the show, but I always forget how cold it can be (55°-65°F) this time of year.

While at the show, I was interviewed on lead-free reliability and its cost for consumer electronics. These are topics I think about often, so let’s discuss them a bit. First, let’s consider reliability.  RoHS was enacted on July 1, 2006, more than 6 ½ years ago. Each year more than $1 trillion worth of electronics are made, therefore, in this period of time, something over $3 trillion worth of consumer electronics have been manufactured. There have been no “the sky is falling”-type of reliability issues in this time. How can I say this? Well, my office at the Thayer School of Engineering at Dartmouth is across the hall from the IT (information Technology) Dept. They purchase all the millions of dollars worth of PCs, printers, displays etc. that Thayer uses. Several years ago (say early 2011) I stopped by when most of the department was in and cheerfully asked if the reliability of the equipment they purchase has gone down since lead-free assembly was enacted. They asked me in unison, “What’s lead-free assembly.” After I explained what lead-free assembly was, they confirmed that they have noticed no changes in reliability. Since RoHS, my family has purchase about 100+ electronic devices, a few have had reliability problems, about as many as in the past. Most were attributed to hard drive fails. Of the scores of friends and colleagues I have, no one has ever commented that they have noticed an increase in electronics fails. So, my conclusion is that consumer product reliability is not “practically” worse if my family and  these many  other folks haven’t noticed it.

I have made an informal study of reliability data of lead-free vis-a-vis tin-lead solders published in papers. A statement from Rockwell Collins’ JCAA/JGF-PP No Lead solder Project: -55C-125C Thermal Cycle Testing Final Report  sums up my overview conclusion nicely: “Test vehicles assembled with lead-free materials (notably tin-silver-copper) exhibited lower reliability under some test conditions.”  Naysayers might be quick to suggest that this statement says that lead-free is no good. However, the statement could be reworded to say: “In considerably more than half of the test conditions, test vehicles assembled with lead-free materials had higher reliability.” Counting the comparisons in the Rockwell-Collins paper shows lead-free better in 51 cases, tin-lead better in 31 cases, and one draw. However, it is disturbing that a small percentage of lead-free assembled test vehicles had much much worse reliability than tin-lead test vehicles. This later information makes me believe that lead-free is not yet ready for mission-critical, high-reliability, long-life products. These small numbers of much poorer reliability assemblies must be understood and corrected before lead-free is ready for mission-critical prime time. The much shorter lifecycle of today’s consumer electronics may also mask this concern.

What about cost? I don’t at all want to minimize the expense that many went through to go lead-free and RoHS compliant. In about 2007, one of our colleagues estimated that it cost the electronics industry $20 billion to become RoHS compliant. I think this number is low, but, from a consumer’s perspective, there has been no cost hardship. The price of a PC continued to go down during and after RoHS implementation, as shown in the figure below. While performing my non-scientific survey of co-workers, family, and friends on reliability, I also asked about cost. All agreed, electronics are cheaper than ever.

 

Challenges still exist, even in consumer electronics with the Head-in-Pillow, Graping, non wet opens, and other defects.  However, we can all purchase lead-free, RoHS compliant products at a reasonable cost and reliability.

 

Cheers,

Dr. Ron

The source for the image is :http://thomaslah.wordpress.com/2010/02/03/apple-and-intel-defying-gravity/

 

Best Wishes,

Dr. Ron

Weibull Analysis of Solder Joint Failure Data II

Folks,

Last time we introduced Weibull analysis. Let’s derive the relationships needed to calculate the slope, beta, and characteristic life, eta.

 

F(t) is the cumulative fraction of fails, from 0 to 1. By choosing Ln(t) as x and LnLn 1/(1-F(t) as y, we would expect a straight line. See the derivation above. It can be shown graphically that this fact is so. So if we plot F(t) versus t on logarithmic graph paper, the slope of the line will be beta. To determine eta, let t=eta, in the first equation below. The result is F(t) = 1-e-1 = 0.632. So the time at which 63.2% of the parts have failed, is eta, the characteristic life.

Let’s consider some data comparing SAC305 and SACM (SAC105 with about 0.1% manganese) BGA solder balls in thermal cycle testing. The primary test vehicle employed was a TFBGA with NiAu finish mounted on PCB with OSP finish. SACM is a new breakthrough soldering alloy that has better drop shock resistance than SAC105 and comparable thermal cycle performance to SAC305. The data follow. The first column is the sample number, the third and fifth columns are the number to thermal cycles to fail for SAC305 and SACM. The second and forth columns are rank of the sample number. One would think that the first number in the second column would be 100*(1/15) =6.67%, as it represents the cumulative percent of samples failed, but a slight correct factor is needed. By plotting the log log of rank as shown above (LnLn1/(1-F(t)) vs log of cycles at failure, we get the Weibull plot. The slopes of the best fit line is equal to beta and the number of cycles at rank = 63.2% is eta.

Fortunately software like Minitab 16 does the plotting and calculating of beta and eta automatically. The results are below:

We see that the shape (beta) for SAC305 is 1.76 and that of SACM is 6.09, the scale or characteristic life (eta) is 1736.8 and 2016.8 respectively.

These results are a strong vote of confidence for SACM. Its steep slope (high beta) suggests a tighter distribution, with more consistent solder joints and its characteristic life (eta) is also slightly greater.

I plan on teaching detailed workshops on this topic. I will keep you posted.

Cheers, Dr. Ron

Electronics Failure Analysis for Pb- and Pb-Free Solder Joints

Folks,

The Weibull distribution is arguably the most important distribution in failure analysis of leaded and lead-free solder joints. It is the first thought of someone trying to model thermal cycle, drop shock, or other failure modes associated with through-hole and SMT assembly.

 

Figure 1. The Likelihood of Getting Heads in 60 Coin Tosses is Described by The Binomial Distribution

The Weibull distribution was invented by Waloddi Weibull in 1931.  This invention fact was recounted by Dr. Robert Abernethy in his famous textbook on Weibull analysis, The New Weibull Handbook. This statement may not seem unusual, until we ponder that all common distributions in statistics were discovered, not invented.  The three most common statistical distributions are the Normal, Poisson and Binomial distributions. As an example of a discovered statistical distribution, let’s consider the Binomial distribution. This distribution describes, among other things, the odds in flipping a coin.  If you flip a fair coin 60 times, you are most likely to obtain 30 heads (H) and 30 tails (T), but getting 29 H and 31 T or 32 H and 28 T would not be all that uncommon. Mathematical analysis shows that the curve below results.  If a coin flipping experiment is performed many times, this curve will faithfully predict the results. The curve is not invented it is discovered from the deep theoretical underpinnings of the Binomial Distribution.

The fact that the Weibull distribution was invented suggests that Weibull selected it because it fit many types of failure data.  He defined cumulative Weibull distribution is defined as:

 

 

where eta is the characteristic life or the scale function and beta is the slope, were as F(t) is the cumulative fraction of failures.  Weibull proposed this function because for beta less than 1, F(t) describes “infant” mortality fails.  In this situation the failure rate is decreasing with time. For beta greater than 1, it describes “wear out” failures, where the failure rate is increasing with time.  In electronics, we typically try to weed out infant mortality by using “burn in.” For beta equal to 1, the failure rate is constant.  These three scenarios are shown in the figure below.

So typically, in electronics failure analysis, we are plotting failure data versus time to determine beta and eta, typically with software like Minitab.

In the next posting we will analyze some failure data to determine eta and beta and discuss their significance.

Weibull himself was a curious character and much of the available information on him is chronicled by Abernethy.

For sure Weibull was a vigorous man.  His second wife was almost 50 years his junior and he fathered a daughter at about 80 years of age!

Cheers,

Dr. Ron

Revelations at ACI

Folks,

I’m taking a few moments from Wassail Weekend, held annually in my village, Woodstock, VT (“The prettiest small town in America”), to write a post about the recent workshops at ACI.

Indium colleague Ed Briggs and I gave a three-hour presentation on “Lead-Free Assembly for High Yields and Reliability.” I think Ed’s analyses of “graping” and the “head-in-pillow” defect are the best around.

There was quite a bit of discussion on the challenges faced by solder paste flux in the new world of lead-free solder paste and miniaturized components (i.e., very small solder paste deposits.) One of the hottest topics was nitrogen and lead-free SMT assembly. There seemed to be uniform agreement that solder paste users should be able to demand that their lead-free solder paste perform well with any PWB pad finish (e.g., OSP, immersion silver, electroless nickel-gold, etc.) without the use of nitrogen. Not only does using nitrogen cost money, but it will usually make tombstoning worse. However, in the opinion of most people, nitrogen is a must for wave soldering and, since it minimizes dross development, it likely pays for itself.

After Ed and I finished, Fred Dimock, of BTU, gave one of the best talks I have ever experienced on reflow soldering. He discussed thermal profiling in detail, including the importance of assuring that thermocouples are not oxidized (when oxidized they lose accuracy). He also discussed a reflow oven design that minimizes temperature overshoot during heating, and undershoot when the heater is off. Understanding these topics is critical with the tight temperature control that many lead-free assemblers face.

Fred Verdi of ACI finished the meeting with an excellent presentation on “Pb-free Electronics for Aerospace and Defense.” Fred’s talk discussed the work that went into the “Manhattan Project.” A free download of the entire project report is available.

There appears to be agreement that acceptable lead-free reliability has been established for consumer products with lifetimes of five years or so, but not for military/aerospace electronics where lifetimes can be up to 40 years and under harsh service conditions. These vast product lifetime and consequences of failure differences are depicted in Fred’s chart (see the pdf link). Commercial products are in quadrant A and military/aerospace products in quadrant D.

One of the greatest risks faced by quadrant D products is tin whiskers. Fred spent quite a bit of time discussing this interesting phenomenon. One of the challenges of this risk is that there is no way to accelerate it, so you can’t do an equivalent test to accelerated thermal cycling or drop shock. Fred mentioned that there have now been verified tin whisker fails, the Toyota accelerator mechanism being one.

In addition to tin whiskers, lead-free reliability for quadrant D products (with a service life of up to 40 years) in thermal cycle and other areas remains a concern.  I mention that tin pest was not on the list of issues for this quadrant.

Fred and the Manhattan Project Team have identified many “gaps” that need to be addressed to determine and mitigate the risk of lead-free assembly for quadrant D products.  They plan to start this approximately $100 million program in 2013.

For those that missed this free workshop, another is planned in about six months.

Cheers,

Dr. Ron

Thanks, Hitachi!

This week I made it official. I retired my Hitachi VT 2000A VCR.

It’s been a long time coming. I bought it in 1988, while in college. Since then, I’ve watched approximately 4 million* movies on it. And even after I migrated to a DVD player and relegated the Hitachi to the kids’ basement playroom, it’s handled, without complaint, the best my sons could throw at it: dirty fingers and hands all over the body, Hot Wheels getting stuck in the playing mechanism, attempts to yank cassettes while  the machine was operating.

It’s been the iron man, the Lou Gehrig of VCRs: Shows up every day, ready to play. It’s a testament to good engineering and, especially, good workmanship (not to mention the merits of tin-lead solder). And after 21 years, it deserves a vacation. Thanks, old friend.

*Possible exaggeration.

3hitachi vcr