The benefits of capillary flow underfills on solder joint reliability.
In electronics manufacturing, underfill refers to a material that is applied to fill the gap between a semiconductor device, such as flip-chip assemblies, ball grid arrays (BGA), or chip-scale packages (CSP), and the substrate, such as a PCB or flex circuit. It is also important in 3-D ICs and advanced packaging technologies that involve stacking multiple chips or integrating multiple functions into a single package.
Underfill materials are essential in modern electronics manufacturing and are used extensively to enhance the reliability, performance and longevity of electronic assemblies. These materials improve mechanical strength by enhancing the physical bond between the chip and substrate, reducing the risk of solder joint failure due to mechanical stress.
Heat and cold can prematurely degrade incorrectly handled materials.
Solder paste is an elaborate mixture of metal powders, acids, thixotropes, solvents and a variety of other chemicals. When combined, the reactions and interactions can be extremely varied and complex. When designing solder paste chemistry, key considerations include not only its in-process performance but also how to maintain the stability of that performance against the rigors of time, temperature fluctuations and usage.
A noted solutions architect offers an audacious plan for AI acceptance. It just might work.
The talk of AI-based printed circuit design – and the idea that artificial intelligence could theoretically design a board faster and more efficiently than a human – has inevitably led to the fear that designers will be replaced by their algorithmic counterparts.
Smaller components do not always need a smaller paste.
As components shrink in size, the demand for finer solder pastes increases. But the selection of solder paste is not just about matching component size; it’s also about optimizing printing and reflow processes to prevent defects and ensure reliability.
Here we explore the significance of solder paste powder size, particularly when and why manufacturers should consider downsizing from standard types to finer alternatives.
Types of TIMs and their application methods.
As demand for high-performance electronic devices continues to grow, managing heat dissipation effectively has become a critical challenge. Thermal interface materials (TIMs) are pivotal in ensuring efficient thermal management by facilitating heat transfer between heat-generating components and heat-dissipating devices. Here, we examine the various types of TIMs and their application methods, including insights into modern dispensers and the advantages and disadvantages of these methods in electronics manufacturing.
Optimizing temperatures will ensure the best possible conditions for soldering.
Verifying and optimizing the temperature profile of a reflow oven ensures an ideal thermal environment for solder paste to melt, flow and solidify, forming robust solder joints.
Calibrating the oven temperatures and ensuring they are set correctly involves sending a so-called “golden board” through the oven. Ideally, a “golden board” is supplied as part of the work kit by the customer or design team. This board (Figure 1) will be a sacrificial, fully populated assembly with (ideally five to seven) thermocouples attached via high-temperature solder in strategic locations across the assembly. It is processed through the reflow oven, collecting detailed information that technicians can use to make adjustments, ensuring the components and areas on the board stay within specified temperature constraints.